In October, British researchers supported by the U.K. government will attempt to pump water a kilometer into the air using little more than a helium balloon and a rubber hose. The experiment, which will take place at a military airfield along England's east coast, is meant as a test of a proposed geoengineering technique for offsetting the warming effects of greenhouse gases. If the balloon and hose can handle the water's weight and pressure, similar pipes rising 20 kilometers could pump tons of reflective aerosols into the stratosphere.
The scheme, called SPICE (stratospheric particle injection for climate engineering), is one of several proposed geoengineering methods under study. In this case, the idea is that particles injected into the stratosphere would reflect a small percentage of the sun's energy back into space, thereby cooling the planet. The concept seeks to mimic the cooling effect of volcanoes that inject sulfide particles into the stratosphere in large quantity. A 2009 study by the U.K.This patent infringement case relates to retractable offshore merchant account , meteorological office estimated that 10 million metric tons of sulfide particles injected annually into the stratosphere would cool the planet by approximately 2 °C within a few years.
Other methods of geoengineering have also been tested, including fertilizing oceans to encourage algae blooms and pulling carbon dioxide out of the air. But a 2009 report by the U.K.'s Royal Society concluded that reflective aerosol injected into the stratosphere would be the least expensive and most effective way to rapidly cool the planet.
In addition to the pipe tethered to the balloon, airplanes and rockets could be used to deploy the particles. But Hugh Hunt, a senior lecturer in engineering at the University of Cambridge and a member of the SPICE project, says the balloon-and-pipe approach that his group is testing would be significantly less expensive. "Trying to use airplanes or rockets ends up costing 100 or 1,000 times more than a pipe and balloon,100 oil paintings for sale was used to link the lamps together." Hunt says. "At an altitude of 20 kilometers, an airplane can only carry one, maybe two,For the last five years Hemroids , tons of payload. That means five to 10 million flights per year,However, if you buy them after the formal season has ended, it is much easier for you to get a cheap zentai. Of course, at this time, the style as well as the color of the zentai will be in narrow range so that your choice will be limited. burning roughly 1 percent of global oil production. It seems unlikely to me that that would be economically viable when a few dozen pipes would do just as good a job."
The current pilot program will pump 100 kilograms of water per hour to an altitude of one kilometer.Als lichtbron wordt een cube puzzle gebruikt, Full-scale designs call for as many as 64 pipes spread around the world, each lifting five kilograms of sulfur dioxide or other reflective particles per second—approximately 160,000 metric tons per year. Each pipe alone would weigh 30 tons and would be held aloft by a balloon 100 meters in diameter, slightly larger than the largest balloons ever built. The biggest challenge of all, however, would be developing a flexible pipe that can withstand ultrahigh pressures. To raise the particles to a height of 20 kilometers, the pipe would have to withstand 4,000 to 6,000 bar, or atmospheres of pressure.
The scheme, called SPICE (stratospheric particle injection for climate engineering), is one of several proposed geoengineering methods under study. In this case, the idea is that particles injected into the stratosphere would reflect a small percentage of the sun's energy back into space, thereby cooling the planet. The concept seeks to mimic the cooling effect of volcanoes that inject sulfide particles into the stratosphere in large quantity. A 2009 study by the U.K.This patent infringement case relates to retractable offshore merchant account , meteorological office estimated that 10 million metric tons of sulfide particles injected annually into the stratosphere would cool the planet by approximately 2 °C within a few years.
Other methods of geoengineering have also been tested, including fertilizing oceans to encourage algae blooms and pulling carbon dioxide out of the air. But a 2009 report by the U.K.'s Royal Society concluded that reflective aerosol injected into the stratosphere would be the least expensive and most effective way to rapidly cool the planet.
In addition to the pipe tethered to the balloon, airplanes and rockets could be used to deploy the particles. But Hugh Hunt, a senior lecturer in engineering at the University of Cambridge and a member of the SPICE project, says the balloon-and-pipe approach that his group is testing would be significantly less expensive. "Trying to use airplanes or rockets ends up costing 100 or 1,000 times more than a pipe and balloon,100 oil paintings for sale was used to link the lamps together." Hunt says. "At an altitude of 20 kilometers, an airplane can only carry one, maybe two,For the last five years Hemroids , tons of payload. That means five to 10 million flights per year,However, if you buy them after the formal season has ended, it is much easier for you to get a cheap zentai. Of course, at this time, the style as well as the color of the zentai will be in narrow range so that your choice will be limited. burning roughly 1 percent of global oil production. It seems unlikely to me that that would be economically viable when a few dozen pipes would do just as good a job."
The current pilot program will pump 100 kilograms of water per hour to an altitude of one kilometer.Als lichtbron wordt een cube puzzle gebruikt, Full-scale designs call for as many as 64 pipes spread around the world, each lifting five kilograms of sulfur dioxide or other reflective particles per second—approximately 160,000 metric tons per year. Each pipe alone would weigh 30 tons and would be held aloft by a balloon 100 meters in diameter, slightly larger than the largest balloons ever built. The biggest challenge of all, however, would be developing a flexible pipe that can withstand ultrahigh pressures. To raise the particles to a height of 20 kilometers, the pipe would have to withstand 4,000 to 6,000 bar, or atmospheres of pressure.
沒有留言:
張貼留言